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Abstract
We outline an end-to-end solution for searching academic literature. This system, Undermind,

uses language models as a reasoning engine and classifier at key steps within a structured search
process. We benchmark Undermind’s performance compared to Google Scholar, showing drastic
improvements including a 10× higher concentration of truly relevant results within the top hits.
Undermind misses virtually no highly relevant works found by Google Scholar, and in addition
returns 10× the total number of relevant results for the median user-generated query.
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Figure 1: Undermind is accurate and comprehensive. We systematically compared the quality
of search results returned by Google Scholar and Undermind for ∼300 user-generated queries. For
the median user query, shown quantitatively in (a), Undermind discovers 10× more relevant results
compared to the top 50 hits on Google Scholar. In addition, Undermind clearly flags (and explains)
which results are most relevant at the top of the report. In contrast, on Google Scholar the few relevant
hits are tedious to pick out, as they are scattered among mostly irrelevant results (only 1 in 10 are
highly relevant). Moreover, Undermind is comprehensive, missing < 3% of Google Scholar’s highly
relevant results. See Section 2 for quantitative details. (b) Undermind’s rate of finding relevant papers
decays exponentially as it explores the database. Powerfully, by tracking this exponential, Undermind
can determine how far it must look to ensure it returns all relevant papers.

1 Building an ideal search engine for scientists

A perfect search system should be like a human assistant. It should understand your complex search
goals, and then carefully and systematically search an entire literature database to find all precisely rel-
evant results for you. It should explain these results, individually and in aggregate, in a comprehensive
report.
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Undermind achieves these goals nearly perfectly. It currently accesses the scientific literature
database ArXiv,1, searching within the full texts of 2.3 million papers. It uses a language model
(GPT-4) as a reasoning engine at key steps in a structured exploration process. Its search algorithm
mimics that of a human, adapting and following citation trails to uncover important papers and
reflecting on progress so far to decide next steps. Ultimately, Undermind delivers a precise set of final
results exactly relevant to the user’s complex search topic, explaining each result in detail. The quality
of this report far exceeds that of existing search engines (see Fig. 1 and Fig. 2).

1.1 How it works

There are four steps to Undermind’s algorithm:

1. Basic search: We identify promising candidate papers using a custom algorithm that combines
semantic vector embeddings, citations, and language model reasoning.

2. Relevance classification: Given your search query, a high quality language model (GPT-4)
accurately classifies each candidate paper based on its full text into 3 categories: highly relevant,
closely related (meaning relevant, but slightly off-topic), or ignorable. See Appendix 3.2 for
classification accuracy statistics.2

3. Adaptation and exploration: The algorithm adapts and searches again based on the relevant
content it has discovered. This adaptation, which mimics a human’s discovery process, makes it
possible to uncover every relevant result.

4. Estimating comprehensiveness: Undermind tracks how frequently it discovers relevant pa-
pers during each search. Undermind initially finds many relevant results, but over time dimin-
ishing returns set in, empirically leading to “discovery curves” which are exponential in form (see
Fig. 1(b)). Modeling this process allows us to determine when Undermind has found nearly all
the relevant works.

2 Key metrics compared to Google Scholar

Here we provide quantitative benchmarks of the quality of Undermind compared to Google Scholar, an
academic literature search engine which is often considered the gold standard by researchers. To make
this benchmark, we gathered and analyzed the results of ∼ 300 user queries submitted to Undermind
by scientists in late 2023.

The main results are presented in Fig. 2, showing the number of relevant papers Undermind au-
tonomously returns compared to the number a human could find with reasonable effort using Google
Scholar.3 As a proxy for reasonable human effort on Google, we gather the first page of Google Scholar
results for 5 separate keyword searches that re-phrase the user’s original query. For a fair compari-
son, we evaluate the relevance of these Google Scholar results using the same relevance classification
subroutine that Undermind employs. Appendix 3.3 describes our methodology and how we translate
complex Undermind queries into reasonable keyword search phrases for Google Scholar, and Fig. 4 and
Fig. 5 contain further data about the classified results.

2.1 Quantitative results

Undermind quantitatively outperforms Google Scholar in 3 ways:

1. 10× more relevant results on Undermind vs. the first 5 pages of Google Scholar. In
many cases Google Scholar finds 0 results, while Undermind finds 10-20. Even for searches where
Google Scholar returns a few relevant papers, Undermind still returns significantly more. The
full distribution of relative performance is shown in Fig. 2.

1https://www.arxiv.org/
2With accuracy ∼98%, Undermind never classifies a highly relevant paper as irrelevant, or an irrelevant paper as

highly relevant.
3Undermind’s classifier was used to identify relevant ArXiv papers in Google Scholar’s top 50 results, which typically

contained ∼30 ArXiv papers.
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Figure 2: Undermind finds far more relevant papers than Google Scholar. Data for 300
user-generated queries. Blue line: The number of relevant results found by converged Undermind
searches (or, if not converged, the estimated total findable by Undermind with modest extension).
Red line: The number of relevant results found in Google Scholar’s top 5 pages for the same queries.
The queries are ordered by the number of relevant papers found by Google Scholar, and then further
by the number Undermind found. For many queries, Undermind finds 10s of papers while Google
Scholar finds nothing (percentile ∼ 0.15). For searches with many Google Scholar results, Undermind
still finds 3-5× more results (percentile ∼0.9).

2. 10× higher density of relevant information on Undermind. Undermind flags relevant
works (typically 10 − 20), explains why they are relevant to the user’s specific query and goals,
and moves them right to the top of each report, as shown in Fig. 1. Each of these highlighted
papers is relevant to the topic, with probability greater than 92% (see Table 2). In contrast,
when reading Google Scholar, typically only 1 in 10 top hits is highly relevant,4 requiring an
enormous amount of effort to manually parse and filter irrelevant hits. See Fig. 4 for the full
distribution.

3. Exhaustiveness of Undermind: Once an Undermind search has converged, virtually every
highly relevant paper found by Google Scholar is already found by Undermind, within statistical
certainty (greater than 97% chance, see Appendix 3.5). This strongly suggests that Undermind
finds nearly all papers that exist on a topic once a search has converged.5

• Moreover, due to the efficiency of Undermind’s search algorithm, reaching convergence is
easy for nearly all searches. A typical search already retrieves more than ∼ 85% of results
within the first 150 papers explored (see Fig. 3(b)). When desired, the rest can be retrieved
by extending a search.

2.2 Further advantages

Further advantages of Undermind, which are harder to quantify, include:

1. The ability to handle very complex searches: Because Undermind reads deep within the full
texts of papers with the user’s exact goals in mind, it can understand and evaluate very complex

4This analysis checked the top 10 ArXiv papers returned by Google Scholar.
5To see why this is true, suppose that Undermind were not exhaustive, and that it only finds a fraction α of some

hypothetical larger set of truly relevant works T . Suppose also that Google Scholar and Undermind draw their discovered
relevant works mostly independently from T , which is a mild assumption given that Google Scholar and Undermind are
completely different algorithms internally. Of the relevant results that Google Scholar finds, a fraction ∼ α would be
found by Undermind as well, and a substantial fraction ∼ 1 − α would be newly discovered relevant papers. However,
we’ve checked that virtually every highly relevant paper found by Google Scholar is also found by a converged Undermind
search (see Appendix 3.5 and Fig. 5). This is most consistent with Undermind being truly exhaustive, i.e. α ≈ 1.
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search goals (see Appendix 3.1 for examples of very complex searches submitted by scientists).
In contrast, for many user requests, Google Scholar completely fails to return relevant results.
This is likely because it is impossible to translate many complex, real world needs and requests
into efficient keyword searches.

2. Knowing how much prior work has been done on a topic Because of the predictable
exponential form of Undermind’s discovery process, we can estimate how many relevant works
exist on a given topic after initially exploring the database. This gives the user an immediate
snapshot of how novel their search topic is, a capability strictly absent from conventional keyword
search.

3. Confirming nothing exists on a topic Because Undermind is likely truly exhaustive, if
Undermind provides no relevant results, one can be reasonably certain nothing exists on the
topic. In contrast, if one uses Google Scholar and finds no results, it’s impossible to know
whether nothing exists, or whether keyword searching with Google Scholar has simply failed (see
Fig. 2, left side).
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3 Appendix

3.1 Distribution of real user searches on Undermind

User-submitted requests to Undermind vary in complexity and difficulty. However, for each search, the
discovery rate of relevant papers follows an exponential form, and saturates after Undermind has found
most relevant results, as shown in Fig. 1(b). The variation in the complexity of searches submitted
by users causes the time constant as well as the total number of relevant papers found to vary widely
between searches.6

To convey this variation, in Fig. 3 we show the predicted number of relevant papers and convergence
rate for the user searches submitted to Undermind and analyzed in this report. A median search
has 24 relevant papers and converges with a time constant of 80 papers evaluated, meaning that a
typical Undermind report evaluating 150 papers would immediately find ∼ 85% of all relevant results.
Extending this search to read 150 additional papers (300 total) would find ∼ 98% of all relevant results.

To clarify the range of complexities for user queries, we provide a few examples (modified slightly
for privacy):

1. Examples of simpler queries

Topic: Review articles on quantum computing with Rydberg atoms
Additional context: I want to learn about the general state of the field of quantum

computing with Rydberg atoms or arrays of Rydberg atoms.

Topic: Routing trapped ions in a quantum computer
Additional context: Trapped ions are usually routed (moved around, or shuttled) to

bring ions closer together to interact and perform quantum gates.

2. Examples of more complex queries

Topic: Tokenization-free large language model architectures, in particular any character-
level models which have been shown to achieve compute/accuracy tradeoffs comparable
to or better than traditional token-based models

Additional context: Large language models typically operate at the level of tokens
(from some fixed vocabulary) rather than at the level of individual characters. However,
compared to token-level models, character-level models have a number of advantages in
their ability to perform tasks involving character-level information, such as recognizing
small spelling mistakes or counting the number of occurrences of a character in a
word. It would therefore be desirable to be able to move away from tokenization as
a paradigm and towards character-level models; however, it is challenging to make
character-level models as compute-efficient as token-level models, because modeling text
at the character level results in much longer sequence lengths. I am interested in any
recent papers (2019 or later) which demonstrate techniques for character-level language
modeling with efficiency (either training efficiency or inference efficiency, or both)
comparable to tokenization-based alternatives.

Topic: Experiments that use tapered optical fibers to couple light into a microfabri-
cated waveguide in the visible spectrum

Additional context: Tapered optical fibers take the mode from the fiber core to largely
being evanescent and can be used to couple into other waveguides with high efficiency. I
am curious about how these tapered fibers are mechanically attached when this method
is used. I care most about results which use light in the visible spectrum, so between
400 nm and 800 nm wavelength.

These complex searches involve many concepts: For the latter search, relevant papers must contain
experimental not theoretical results, use tapered optical fibers, talk about optical coupling into a
microfabricated waveguide, and must use visible spectrum light. In addition, the user clarifies they

6Someone asking for “any quantum experiment” would find thousands of papers, with a very long time constant for
exponential saturation, while someone asking for a very specific topic might find only 1 or 0 papers, with a short time
constant.

5



a) b)

Figure 3: Statistics of Undermind user searches. Histograms of the exponential amplitude (a) and
time constants (b) for the best fits to the discovery curves (as in Fig. 1(b)) of ∼ 300 user searches. (a)
The amplitude Undermind predicts for each search is the total number of papers Undermind expects
to find if the search is extended to fully converge. (b) The time constant τ of the exponential describes
how quickly this exponential discovery process approaches convergence. The discovered fraction of
total papers f after evaluating n papers is modelled as f = 1 − e−n/τ . The majority (∼ 63%) of
relevant papers are discovered after τ papers are evaluated. Typical Undermind searches evaluate 150
papers.

are most interested in learning about mechanical attachment methods. This is a very difficult, if
not impossible, goal to convey to a keyword search engine, though such goals can be achieved by
Undermind.

3.2 Benchmarking Undermind’s relevance classification accuracy

Table 1 presents measurements of the classification accuracy of the Undermind language model clas-
sifier, the second step of the search algorithm described in Sec. 1.1. This classifier looks at the user’s
request (topic, and any additional context they provide), and portions of the full text of an ArXiv
paper, and decides whether that paper is “highly relevant”, “closely related”, or can be ignored. This
classification accuracy was benchmarked by manually analyzing over 400 papers across a range of
representative searches, and comparing the human evaluation to the language model’s judgment.

We present the conditional probabilities of misclassification in Table 2. If a paper is highly relevant
as judged by humans, there is a ∼2% chance it is identified as not relevant by the Undermind classifier.
If a paper is closely related as judged by humans, there is a ∼9% chance it is identified as not relevant.
Conversely, if Undermind says a paper is highly relevant, there is a less than 4% chance a human
would say it is irrelevant (indicating a low probability of wasting time reading Undermind’s results).
The outcome: a user can confidently only read the presented highly relevant and closely
related results, without fear of missing any highly relevant results, and without wasting time reading
irrelevant papers.

The accuracy of Undermind’s classifier was crucial for the analysis in this report: it makes it
possible to automate the classification of more than 2,500 Google Scholar retrieved papers in parallel,
which would otherwise take ∼ 50 hours of human effort.

3.3 Methodology for generating keyword phrases for Google Scholar com-
parison

When formulating their queries for Undermind, scientists were told to phrase their request to capture
the entirety of their search goals and conditions. As a result, many of their queries are verbose and
complex, and un-optimized for keyword search (see Appendix 3.1 for examples).

In order to translate these verbose queries into a format usable by Google Scholar for our compar-
ison, we needed to mirror the process a human takes to break down their complex search task into
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Undermind Classification Human Judgment

Highly relevant Closely related Not relevant

Highly relevant 85 17 0

Closely related 25 72 8

Not relevant 2 9 214

Table 1: Statistics of Undermind’s classifications compared to human judgement. We
analyzed 432 papers classified by the language model, and carefully checked which classification a
human rater would independently assign each paper, given the user’s request, across a range of searches.
Each cell shows the number of papers which the language model classified into a specific category (the
row) and which the human classified into a specific category (the column). Note that, if we continued
to analyze more irrelevant papers for a given search, the bottom right cell would increase indefinitely,
while other cells would remain saturated at fixed values. This is because “not relevant” papers with
very low ranking have virtually no false positive or false negative events, because the language model
can clearly identify they are off topic.

Human Judgment Undermind Classification Probability

Highly relevant Closely related Not relevant

Highly relevant 75.9%+9.8
−6.4 22.0%+9.6

−6.2 1.8%+4.7
−1.0

Closely related 17.3%+9.7
−5.8 73.0%+10.9

−7.0 9.2%+8.0
−4.1

Undermind Judgment Human Classification Probability

Highly relevant Closely related Not relevant

Highly relevant 83.3%+9.4
−5.6 16.7%+9.4

−5.6 0.0%+3.8
−0.0

Closely related 24.0%+10.2
−6.5 69.0%+10.9

−7.2 7.6%+7.2
−3.6

Table 2: Conditional classification rates. Top: Undermind classification probabilities conditioned
on human judgements. Associated upper and lower 95% confidence intervals are shown. Bottom:
Human classification probabilities conditioned on Undermind judgement of a paper as highly relevant
or closely related. For each table, note the far right column, which gives the probability that a truly
relevant paper is missed (upper table) or the probability that a paper emphasized by Undermind is
irrelevant (lower table).

bit-sized keyword searches. To automate this process, we prompted GPT-4 to create 5 keyword search
phrases from each Undermind query (prompt details below). We then gathered the top 10 papers
found by each of these keyword searches on Google Scholar (50 total papers) to compare to the papers
Undermind retrieves and analyzes.

Generating keyword search phrases Here is an example of how GPT-4 was used to generate the
keyword search phrases for a user search:

Topic (user-provided): Comprehensive overviews of the development of large language
model architectures over time

Additional context (user-provided): I am interested in finding papers that explicitly pro-
vide and overview of the major advances made in designing large language models (LLMs)
(primarily the transformer architecture, but also others if applicable). I want to find papers
that specifically discuss the research advances, and review the major papers published and
models developed by academic and industrial labs and their contributions, for example (a
paper needn’t cover absolutely all of these, topics but this sort of thing should be the focus).
I do NOT want papers that ONLY talk about what LLMs are, or review how they work.
I am most interested in papers published in 2023 (please highlight these, but also include
papers from other years.)

Prompt to GPT-4 to generate search phrases:
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Figure 4: Benchmarking the efficiency of reading Google Scholar’s top results. This plot
shows the fraction of relevant papers found within the top 10 ArXiv papers returned by Google Scholar
for each of the ∼ 300 user-generated searches (ordered by percentile on the x-axis). For most searches,
the relevant results are sparse.

System message: You are a thoughtful, expert scientist, and you are knowledgeable about
carefully crafting a search phrase to find useful papers in a search engine.

User message: I am trying to help a colleague find papers about this topic: ‘{topic}’.
In addition, here is some background information they provided: ‘{additional context}’. I
want you to help me generate 5 unique keyword searches for Google Scholar that will find
papers on this topic. Do not use boolean operators. Make sure not to repeat searches without
changing the keywords. Make some searches broad and some narrow, some very short, and
some slightly longer.

Generated keyword search phrases for this example:

1. evolution of language model architectures

2. historical review transformer language models

3. large language models development milestones

4. language model architecture advancements 2023

5. comparative study large language model architectures

For each of these keyword search phrases, we gathered the top 10 results from Google Scholar (top
page). We then found the ArXiv papers in these results (typically ∼ 30 papers out of 50 gathered).
We ordered these ArXiv papers in a round-robin fashion (top paper from one search, then the top from
the next, and so on). We refer to the first 10 ArXiv papers discovered as the effective “first page” of
Google Scholar, and when we quote the “top 5 pages of Google Scholar”, we are referring to all ArXiv
papers found in the entire 50 results.7 We believe this set of ArXiv papers from the “top 5 pages” is
a reasonable approximation of the set of papers a human could parse with significant manual effort.

3.4 Measuring sparsity of relevant works within Google Scholar’s top re-
sults

We evaluated the first 10 ArXiv papers found by Google Scholar using Undermind’s high quality
classification system to determine if each paper was relevant to the user’s original request. Fig. 4
shows the fraction of these top 10 results which were actually relevant to a user’s search, across the
full set of Undermind searches.

When reading through the top few Google Scholar results, often more than 90% of results are
completely irrelevant (right side of graph). Note that relevant papers do exist for most of these

7In 4 out of the ∼ 300 searches, we found less than 10 ArXiv IDs in the top 5 pages of Google scholar (these searches
only had 7, 8, 9, and 9 ArXiv papers). For simplicity, we treat these searches as if we had found 10 ArXiv papers to
analyze and classified these few additional papers as irrelevant.
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searches (see Fig. 2 for the predicted number of relevant papers for most searches). Google Scholar
simply finds very few of these relevant papers.

3.5 Demonstrating exhaustiveness of Undermind’s converged searches

3.5.1 General outline of how to measure exhaustiveness

Method 1: evaluating the entire database In order to demonstrate Undermind’s exhaustiveness,
one would ideally evaluate the entire database of papers by taking the following steps:

1. Gather many fully converged Undermind searches, where Undermind predicts it has found ev-
erything.8

2. For each of those same searches, check every single other paper in the database to see if it is
relevant (all 2.3 million ArXiv papers).

3. Directly report the fraction of true relevant papers missed by Undermind for the average search.

Method 2: ensembling search methods Because evaluating every paper is prohibitively expen-
sive, a different approach is usually taken. Instead, one samples many complementary search methods
which are somewhat uncorrelated. Their combined results are assumed to exhaustively gather all rele-
vant papers. One can then compare the retrieved papers of any specific search method to the set of all
papers found by all the methods. The advantage of this approach is that one only needs to evaluate a
small fraction of all papers in the database to find all truly relevant results.

Method 3: comparing two search methods A final method to evaluate exhaustiveness is to
compare the fraction of relevant results mutually found by two semi-independent methods. An outline
follows: Assume method A and method B of finding relevant papers are uncorrelated (by uncorrelated,
we mean the two methods draw the relevant papers they return independently from a hypothetical
larger set of all relevant papers), and that method A finds a fraction α of all total relevant results (this
is the parameter we would like to estimate). If one examines the relevant results found by method B,
a fraction α of these relevant results in B will be found by A as well due to randomness. One can thus
estimate α, the fraction of all results that method A finds, as:

α = Exhaustiveness of A ≈ Relevant results found simultaneously by method B and method A

All relevant results found by method B
(1)

This is the method we use to benchmark Undermind.

3.5.2 Estimating Undermind’s exhaustiveness by comparing to Google Scholar

We use the method of comparing semi-independent search methods (see equation (1)), to estimate the
exhaustiveness of Undermind. We compare exhaustive Undermind searches to the papers retrieved in
the top 10 results from Google Scholar for that same search. Papers “encountered” by Undermind
refer to papers that Undermind decided to check with its relevance classifier. The data required to
calculate exhaustiveness are derived from Fig. 5, and are summarized here:

• Within the top 10 results from Google Scholar, for a converged Undermind search, Google Scholar
typically finds 5.25 papers that were never encountered by Undermind (Fig. 5(a), right side).

• Within the 5.25 papers unencountered by Undermind, only 0.03 highly relevant papers are found
on average (Fig. 5(c), right side).

• Within the 4.75 papers that were already encountered by Undermind (Fig. 5(d), right side), 1.21
are highly relevant (Fig. 5(f), right side).

8These are searches where Undermind predicts it will not discover more relevant papers with further reading, because
it has read enough papers to saturate the exponential discovery curve.
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To estimate the exhaustiveness of Undermind using equation (1), we take the ratio:

Highly relevant papers found by Undermind in Google Scholar top 10

All highly relevant papers in Google Scholar top 10
=

1.21

1.21 + 0.03
≈ 97.6%. (2)

It is therefore likely that a converged Undermind search contains essentially all highly relevant papers
that exist, within a few percent statistical error.9

One can also estimate the exhaustiveness of finding closely related papers with Undermind, though
this is a less crucial metric (since these papers are not precisely about the topic). Using the above
methods, Undermind appears to find 1.13/(1.13 + 0.28) ≈ 80% of all closely related papers that exist.
However, this is likely a significant underestimate because of the misclassification rate of Undermind’s
relevance classifier. These misclassification errors are difficult to estimate, and contain significant
uncertainty, so we omit a rigorous analysis of the true exhaustiveness of closely related papers.10

3.6 Measuring the total number of relevant papers in the top 50 Google
Scholar results

To save on compute costs, instead of running the relevance classifier over all the ArXiv papers found
in the top 50 papers on many Google Scholar searches, we can obtain a close estimate of the number
of relevant hits in the top 50 Google Scholar results using the data in Fig. 5.

For a converged Undermind search, we established in Appendix 3.5 that Google Scholar finds
virtually no relevant papers Undermind misses. Therefore, one can use the set of Undermind-discovered
relevant papers as the ground truth, and simply check how many of those same papers appear in the
top 50 results of Google Scholar.

For non-converged searches, we can still easily estimate the number of expected relevant papers in
Google Scholar’s top 50 results using the data in Fig. 5. To do so, we first estimate the fraction of
total papers a given search has found so far, which places the search at a given position on the x-axis
of Fig. 5. At that x position, we next estimate the ratio

Total relevant papers in Google Scholar top 10

Relevant papers found by Undermind in Google Scholar top 10
(3)

by comparing the best fit data in Fig. 5(b-c) to Fig. 5(e-f). Finally, we count the number of relevant
papers that the non-converged Undermind search has found in the top 50 results, and correct this
upwards to account for the undiscovered papers. This correction factor is in the range of 1× to 2.5×.
Where necessary, the data shown in Fig. 2 have this correction already applied.

9Sources of uncertainty include: error on the best fit lines in Fig. 5, misclassification errors of Undermind in Table 1
and Table 2, and the uncertainty from a finite sample size of ∼ 300 highly relevant papers.

10As an outline, misclassification of irrelevant papers as closely related occurs at a ∼ 4% rate in Table 1. Assuming
this 4% error also holds for Google Scholar sampled papers (not necessarily justified), this implies the ∼ 5 irrelevant
papers in the set of unencountered papers would produce ∼ 0.2 falsely identified closely related papers, a large fraction
of the observed 0.28 closely related papers in Fig. 5(b), right side.
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Figure 5: Statistics of papers in the top 10 Google Scholar results. These plots show the
number of papers in the top 10 papers returned by Google Scholar which were not yet encountered
and classified by Undermind (a), and how many of those were closely related (b) or highly relevant
(c) after evaluating them with the language model classifier. These are shown as a function of the
convergence fraction f = 1− e−n/τ of each Undermind search, which is Undermind’s best estimate of
the fraction of relevant papers it has found so far (f is described further in Fig. 3). Red lines show
moving averages of 20 datapoints, and black lines are best fit lines to the entire dataset. (d-f) shows
the same corresponding data for the papers that were already encountered by Undermind in the top
10 Google Scholar results. (a-c) show that converged searches (far right of each graph) have on average
∼ 5 papers in the top 10 which Undermind has not yet encountered and evaluated. However, virtually
no new highly relevant papers are discovered when those papers are evaluated. See Appendix 3.5 for
further details and interpretation.
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